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NATURAL CONVECTIVE HEAT TRANSFER AND RESISTANCE FOR A HEATED 

SPHERICAL BODY WITH A LAMINAR BOUNDARY LAYER 

A. A. Gusakov and G. A. Kolykhalov UDC 536.24:533.6 

Stationary natural convection is considered for a uniformly heated solid sphere 
at high Prandtl-Grashof numbers. No detachment occurs in the flow around the sphere. 

The solution is based on the equations of continuity, motion, and energy conserva- 
tion for a compressible medium in the boundary-layer approximation. The density and 
viscosity are taken as temperature dependent, with the density determined on the assump- 
tion that the pressure difference within the boundary layer is much less than the pres- 
sure outside the boundary layer, or the viscosity is linearly dependent on temperature. 
The successive:approximation solution is based on a layer of finite thickness (Shvets's 
method) and is restricted to the second approximation. A dimensionless relationship 
has been derived for the heat-transfer factor, which agrees well with experiment. 

The theoretidal value for the natural convection resistance coefficient has been 
determined on the assumption that there is an additional (lifting) force apart from the 
frictional force and the pressure difference, which is due to the density difference 
between the media outside and within the boundary layer. 

Experiments on natural convective resistance agree well with the theory; these 
measurements were made at the Prandtl-Grashof numbers between 3.104 and 3"10 -5. 

Dep. 1789-74, April 15, 1974. 
Original article submitted April ii, 1973. 

VELOCITY AND TEMPERATURE DISTRIBUTIONS OF A TURBULENT AIR FLOW 

IN A HORIZONTAL PIPE UNDER THE INFLUENCE OF THERMOGRAVITATIONAL FORCES 

A. F. Polyakov, V. A. Kuleshov, 
and Yu. L. Shekhter 

UDC 532.517.4 

The distributions of the average velocity and temperature in a turbulent air flow 
in a horizontal pipe are investigated experimentally. 

The experimental section consists of a circular pipe with an inside diameter of 
144 mm. The length of the unheated entrant zone of the pipe is 20 diameters, and the 
length of the heated zone is 50 diameters. Heating is realized by the direct passage 
of an alternating current through the pipe wall. The wall temperatures are measured 
along the tube with 90 thermocouples. The temperature distribution in the flow cross 
section is measured by means of a thermocouple probe, and the velocity profile with a 
Pitot tube and hot-wire anemometer. The results of preliminary measurements of the 
local heat transfer and the velocity and temperature fields free of the influence of 
thermogravitational forces are consistent with the existing published data. 
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The velocity and temperature fields subject 
to the influence of thermogravitational forces 
are measured in the ranges of Reynolds and Grashof 
numbers 

ud g~qc d~ 
R e =  : ( 1 . 3 -  5,2)-104: Gr= - - (0 .2 -  2).10 ~. 

V " ~/V2 

The results of measurements of the average 
velocities and temperatures in the vertical and 
horizontal diametric planes far from the start of 
heating are summarized in tables and figures, one 
of which is included in the abstract (Fig. I). 

It is evident from the figure that for Re = 
5.2.104 and Gr = 0.2.109 (curve i) the velocity 
and temperature profiles in the vertical (ic) and 
horizontal (id) planes coincide and are symmetric- 
al, indicating the noninfluence of thermogravita- 
tional forces. On the other hand, for Re = 1.3. 
104 and the same value of Gr (curve 2) an appre- 
ciable asymmetry is noted in the velocity and tem- 
perature profiles in the vertical diametric plane 
(2c). With an increase in Gr (curve 3), however, 

even for Re = 5.104 the influence of the thermogravitationa! forces on the velocity and 
temperature profiles is significant. 

For Re = 1.3.104 (curve 2) the velocity and temperature distributions have maxima 
in the horizontal diametric plane. The pattern of the velocity and temperature dis- 
tributions in this regime is qualitatively reminiscent of the distribution of the rela- 
tive velocity and temperature values in the case of viscogravitational flow in hori- 
zontal pipes. The maxima in the velocity and temperature distributions with respect 
to the horizontal diameter indicate the presence of secondary currents in the given case. 

Dep. 1781-74, February 25, 1974. 
Original article submitted January 30, 1973. ~ 

AN APPROXIMATE ANALYTIC SOLUTION OF THE TWO-DIMENSIONAL 

RADIATIVE HEAT-TRANSFER PROBLEM 

B. I. Medvedev, S. I. Gertsyk, and A. G. Zen'kovskii UDC 536.3 

We consider the two-dimensional problem of radiative heat transfer with sources 
in a stationary gray medium between two infinite parallel gray planes at specified tem- 
peratures. 

By using the Green's function method exact formal expressions are obtained for 
the temperature distribution of the medium and the radiation fluxes. 

It is shown rigorously that in the absence of heat sources and for a linear varia- 
tion of the fourth powers of the boundary temperatures along the longitudinal coordi- 
nate the temperature distribution of the medium and the vertical radiation fluxes can 
be found from the solution of a one-dimensional problem, i.e., for boundary tempera- 
tures constant lengthwise. 

For the practically important case of a smooth change of the boundary temperatures, 
when the characteristic distance over which the boundary temperatures change is not 
less than the distance between the planes bounding the system, approximate expressions 
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are obtained for the temperature distribution in a layer and the radiant heat fluxes 
in the form of rapidly converging series. It follows from these expressions that for 
values of the longitudinal optical thickness T of the order of a few transverse optical 
thicknesses To the re-emission of the medium smooths out the effect of the parts of 
the boundaries farther away than T. Therefore, for smoothly varying boundary tempera- 
tures the one-dimensional approximation gives good results. 

Results are presented of a numerical calculation for a point source when the tem- 
perature of the boundaries varies according to the law ~ ~ exp (--T) for to = i. 

Dep. 1780-74, April 15, 1974. 
Original article submitted December 7, 1972. 

NONSTATIONARY HEAT CONDUCTION IN A HEMISPHERE 

S. I. Prokopets UDC 536.24.02 

The nonstationary temperature distribution in a hemispherical shell is a solution 
of the following boundary value problem: 

ot f a~ 2 at 1 a ( oat,t/ 
_ a  + - - -~ , .  + sin aoJ/' O~ '(~r ~" r r2sinO O0 ', 

t ( r ,  O, ~ : ) = t  o(G O) for 1 :=0 ,  

t (r ,  O, T ) = f ( r , ' O  for 0 -  
2 ' 

It(r, O, "c)[<oo for 0 = 0 ,  

Ot 
"~ ---Or - -  a [t - -  q (0, "0] = 0 for r = P1, 

(i) 

(2) 

(3) 

(4) 

(5) 

of 
~ r  + ~  2(0, ~ ) ] = 0  for r = R 2 .  ( 6 )  

We seek the solution of this problem in the form of a series in the eigenfunctions 
of the Sturm-Liouville problem in the variable r. The convergence of the series ob- 
tained is improved and the boundary conditions on 0 are satisfied by the G. A. Grinberg 
method. Finally, the solution of the problem takes the form 

2 ( 

n=0 k=l 
(7) 

where the Mp (~nk r) are the eigenfunctions of the problem -- Bessel functions of the 
first kind of order p = n + i/2, where n = O, i, 2, ..., and the Nnk are their norms; 
the P2n+1(0) are Legendre polynomials. An asymptotic formula is obtained for the 
eigenvalues. 

Dep. 1788-74, April 15, 1974. 
Original article submitted January 26, 1972. 
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EFFECTS OF THERMOCOUPLE RECESSES ON THE TEMPERATURE 

DISTRIBUTION IN A FUEL ROD 

Yu. V. Mironov and N. S. Razina UDC 536.242 

The discussion concerns a planar wall separating a layer of fissile material from 
a flow of heat carrier; a rectangular slot in the wall carries the thermocouple, whose 
head is held by a filler, whose thermal conductivity may be much less than that of the 
wall. The outside of the slot is coated with a metal powder whose thermophysical prop- 
erties are close to those of the wall material. The internal surface of the fuel is 
assumed to be thermally insulated, while the heat-transfer coefficient to the liquid at 
the outer surface of the wall is preset, with the flow temperature near the slot as- 
sumed constant. 

The problem is complex because the thermal conductivity is a discontinuous function 
of the coordinates. The region is divided into two zones, within which the thermal 
conductivity of the multilayer wall varies only along one coordinate. In each region 
the solution is found as an expansion in terms of generalized eigenfunctions having dis- 
continuous derivatives at the boundaries between layers. The solutions are joined up 
at the interface to give an infinite system of linear algebraic equations, and the 
problem is closed by restricting the number of terms in the expansion. 

Examples of computer calculations are presented. Tests on the convergence showed 
that a satisfactory agreement between the solutions, with a discrepancy of not more than 
3-5% at the interface, can be obtained by retaining 20-30 terms. 

Dep. 1782-74, April 15, 1974. 
Original article submitted July 9, 1973. 

THE TRANSIENT TEMPERATURE PATTERN AROUND A NONCIRCULAR EXCAVATION 

I. A. Yabko UDC 536.24 

The nonstationary heat transfer between the rock and flowing air is important in 
calculating the heat conditions in deep pits. This is a boundary problem of the third 
kind for thermal conduction in a planar unbounded region bounded within by the excavation 
[i]. An exact solution is known for a circular tunnel [i, 2]. The paper deals with a 
noncircular convex shape on the assumption that the Fourier number Fo is small. 

The Laplace transformation with respect to Fo reduces the problem to a regular de- 
generate boundary-value problem with the small parameter ~2 = s_~ (s is the Laplace 
transformation parameter) for the first derivatives; here the asymptote is given as a 
whole, i.e., the solution is put in the form 

T(~'8)=~1(~'8)[1 +~al(M)+ $2a2(M)+ . . .] ,  (1) 

where M is an arbitrary point, T is the Laplace transformation of the solution to the 
initial problem. Expressions are derived for TI(M, ~) and at(M), and it is found to 
be possible to determine the later terms in (i). 

The solution obtained by inverting (i) Js used to derive the nonstationary heat- 
transfer factor, and an example of an elliptic tunnel is considered. 

i. 

LITERATURE CITED 
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Dep. 1792-74, April 17, 1974. 
Original article submitted January 30, 1073. 

THERMAL STRESSES IN AN UNBOUNDED PLATE WITH TEMPERATURE 

DEPENDENT THERMAL DIFFUSIVITY 

I. Ya. Chernyavskii, V. V. Akesnov, 
and V. V. Kotel'nikov 

UDC 621.78 

An unbounded plate with a one-dimensional temperature distribution has normal 
stresses Oxx and Oyy, which are given by the following [3]: 

R R 
( 1 i' , 12x i czETpxdx)" 1 aETp "- ~ ~ETp dx -? 8R~-- (Txx = (~gY - -  1 --. ,u ~, 

--R --"R 

(5) 

The temperature distribution Tp = T(x, t) -- To as a function of the coordinate x 
and time t may be found for the case where the thermal diffusivity a is dependent on 
temperature via logical transformations of a standard equation [i] for the temperature 
of a homogeneous unbounded plate uniformly heated at the start and with a linear sur- 
face temperature variation. A semiempirical equation has been obtained for Tp in the 
following form on the assumption that da/dT is small and a/ao can be put as a linear 
function of T: 

F~ 2[ ) 
Tp -- bR2 

(4) 

The symbols here are as in [i], with k the coefficient in the linear interpreta- 

tion of a/ao. 

If the rate of change of temperature b is constant, integration of (5) with (4) 
gives an expression for the stress distribution over the cross section in dimensionless 

form: 

1 + 2L Fo 1 -~- 2L Fo ( 6 )  
~xx = ~yy -- 4L l / ( I+L){  In (1 4- 2L + 2 .IS(1 + L ~ ) -  

w h e r e  L = k l b ! F o .  

C h e c k s  on t h e  c a l c u l a t i o n s  showed t h a t  (4) d e s c r i b e s  t h e  t e m p e r a t u r e  d i s t r i b u t i o n  
t o  10-15% f o r  Fo > 1 and  b < 2000 d e g / h  ( t h e  d i s t r i b u t i o n  was c a l c u l a t e d  w i t h  a 
L u k ' y a n o v  h y d r o i n t e g r a t o r ) ;  t h e  s t r e s s e s  c a l c u l a t e d  f r o m  (6)  w e r e  f o u n d  t o  be  20-25% 
t o o  h i g h  (Fo z 2) r e l a t i v e  t o  t h o s e  f o u n d  n u m e r i c a l l y .  

F o r  p r a c t i c a l  p u r p o s e s ,  t h e  a c c u r a c y  g i v e n  f o r  t h e  t e m p e r a t u r e  by  (4) and f o r  t h e  
s t r e s s e s  by  (6)  i s  q u i t e  s u f f i c i e n t .  

i, 
2. 

LITERATURE CITED 

A. V. Lykov, Theory of Thermal Conductivity [in Russian], Moscow (1952). 
I. Ya. Chernyavskii and V. F. Tumanov, Zavod. Lab., No. 9 (1970). 

1426 



~ 

4. 

B. A. Boley and J. Ho Weiner, Theory of Thermal Stresses [Russian translation], 
Mir, Moscow (1964). 
I. Ya. Chernyavskii, V. V. Aksenov, and V. F. Tumanov, in: Researches in the 
Engineering Physics of Building Materials [in Russian], Chelyabinsk (1972). 
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Original article submitted May ii, 1973. 

SIZES OF STEAM BUBBLES PRODUCED BY SMALL PORES 

I. I. Markov UDC 5 3 6 , 4 2 3  

Theoretical and experimental studies have been made on the detachment diameter Do 
for a vapor bubble as a function of pore radius R when the liquid wets the heated sur- 
face. 

Bubble growth in small pores is discussed on the assumption that the center of 
gravity of a bubble is at height h/2; the ends of the base of a bubble are fixed 
throughout the bubble growth up to detachment and lie at x = R. 

The problem is solved by variational methods from the condition for a minimum in 
the total energy, which equals the sum of the surface energy 

h 
U l = aR 2 (Cr2o - -  c@ + 2c%on ,f xI/- 1 + (x') ~ dV 

o 
(i) 

and the potential energy 

h 

1 I hx~dy" u~ = - - - f  e ( p '  - o " )  n ,: 

o 
(2) 

The problem is that of determining the minimum in the functional 

h 

U = n R  2 ( 6 e o -  6n)  + 2nc~Io , x g l + (x')~ - -  4a ~ dy. 

o 

(3) 

The Euler-Lagrange equation for the conditional minimum is 

d xx '  xh 
1/1 - -  (x 'F + 2 -  ~ - -  ~, = o. dg g r  + (x,)~ 

T h e  b o u n d a r y  c o n d i t i o n s  g i v e  t h e  f i r s t  i n t e g r a l  i n  (4 )  a s  

x x2h 
%x. 

~ 1  + (x')~ 4a 2 

We put x' = cot a to get 

As 

xh 
sin a - -  k .  

4a ~ 

(4) 

(5) 

(6) 

dx dx 
dy - -  cot co, then dy _ cot a 

(7) 
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Fig. i. a) Shape of bubble at a pore at the start; b) variation in 
shape and in ao and ao' during growth. 

We differentiate (6) with respect to x and a to get 

and so 

h 
c0s ~ d(z ~ dx, 

4a g 

4 / 2 -  ~ 
dx = - -  cos ada .  

h 

We substitute (9) into (7) to express y as 

f 4a 2 
Y = h sin ad~  = 

f r o m  w h i c h  

4a ~ - 
cos a § C2, 

h 

h (y- G) 
COS O~ = -- - -  

4a 2 

(8) 

(9) 

(io) 

(ii) 

We eliminate ~ from (6) and (ii) and determine I from (6) 
C2 = 0, which is given by (I0) with y = 0 and ~ = 90 ~ (Fig. i), 

we get 

h3+ R 2 h -  8a2R = O. 

The real root of this equation is 

h = 8a~R 

T h e  h e i g h t  o f  t h e  n e c k  i n  t h e s e  b u b b l e s  i s  v e r y  s m a l l ,  s o  

D 0 =  V 8a2R 

T h i s  f o r m u l a  a g r e e s  w e l l  w i t h  e x p e r i m e n t .  

with x = R on the basis that 
and for x = 0 and y = h 

(12) 

(13) 

(54) 

NOTATION 

U is the energy; h is the bubble height; Do is the breakaway diameter; p' and p" 
are the derivatives of liquid and vapor; g is the acceleration due to gravity; a is 
capillary constant; q is the surface tension; and % is the undetermined Lagrange mul- 
tiplier. 
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AN ENERGY MODEL FOR THE DISPLACEMENT OF LIQUID BY VAPOR 

IN THE CIRCULATION LOOP OF AN EVAPORATOR 

M. B. Vaisblat, L. A. Minukhin, 
and A. M. Rozen 

UDC 532.529.5+621.187.16.072 

The column theory [i, 2] is usually employed in calculations on the motion of 
liquid by vapor (gas) in vertical industrial tubes; however, it has correctly been pointed 
out [3] that the model does not correspond adequately to the actual process. Unfortu- 
nately, no studies on this topic have yielded convenient calculation methods. 

Here we propose an energy model for the flow of a fluid in such tubes; this model 
indicates that the flow occurs as a result of the energy provided by the bubble piston 
moving in the same direction as the liquid. It is assumed that the bubble moves faster 
than the liquid (the phases are in relative motion). 

This model gives equations whose solution defines the useful work done by the 
bubble piston; this work is as follows for the motion of a vapor-liquid mixture in un- 
heated vertical tubes: 

iv 
f q) /-2 0" ' dye. ( i )  L=, ,  1--~p CT p' 

o 

The vapor content has to be known in order to use this formula for practical pur- 
poses; published methods of determining this are complex and difficult to apply. The 
value has been determined by minimizing the total energy of the mass flow, and this 
gives the true vapor content as 

where rq = ( p , , / p , ) l / s  

'qm o 
�9 ( 2 )  

Results are given from experimental tests on (2). 

Substitution of (2) into (i) allows one to calculate this useful work for a variety 
of equipment; in particular, the energy model has been applied to evaporators of var- 
ious styles with separate boiling zones. The equation for the circulation speed in the 
loop then gives the following expression: 

w = 4 /  V(/'-'r 2 rl (3) 

~Eh~ -n7 fwcP "/ ywcp J, 

T e s t  r e s u l t s  a r e  g i v e n  f o r  e v a p o r a t o r s  o f  v a r i o u s  s i z e s  f r o m  p i l o t  p l a n t s  w i t h  
h e a t i n g  s u r f a c e s  o f  5 m a to  f u l l - s c a l e  i n d u s t r i a l  p l a n t s  w i t h  2700 m a w i t h  w i d e  v a r i a -  
t i o n  o f  t h e  t e c h n o l o g i c a l  p a r a m e t e r s .  F o r  i n s t a n c e ,  t h e  t e m p e r a t u r e  was  v a r i e d  f r o m  
45 t o  115~ t h e  h y d r a u l i c  r e s i s t a n c e  Shg f r o m  5 t o  40 ,  and  so  on ,  and t h e  d i s c r e p a n c y  
b e t w e e n  t h e o r y  and e x p e r i m e n t  f o r  t h e  s p e e d  d i d  n o t  e x c e e d  10%. 

NOTATION 

wo" and wo' are the reduced vapor and liquid velocities in lift tube; 0" and 0' 
are the densities of vapor and liquid; T is the absolute temperature of secondary steam; 
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n is the ratio of cross sections of lift tube and heating tubes; ~ is the true bulk 
steam content; W is the amount of steam formed in apparatus; r is the latent heat of 
evaporation; c is the specific heat of solution; Eh~ is the total hydraulic-resistance 
coefficient of nonboiling part of loop; f is the cross section of heating tubes; w c is 
the circulation speed (speed in heating tubes). 

. 

2. 
3. 
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ELECTROLYTE SCALE DEPOSITION MECHANISM FOR 

BOILING ELECTROLYTE SOLUTIONS 

V. S. Malovichko, S. M. Konstantinov, 
and V. D. Popov 

UDC 536.423.1 

The scaling is determined by interaction between the solids, the liquid, and the 
heat-transfer surface. 

If ionic adsorption occurs on microscopic areas the rules for selective adsorption 
apply, only oppositely charged ions will be adsorbed; ions of opposite sign retained 
by electrostatic attraction near the adsorbed ions will form a double electrical layer 
near the surface. 

The metal surface has an anode-cathode structure, so the double layer is inhomo- 
geneous; the first layer is deposited in accordance with the laws of selective adsorp- 
tion, while the second at the anode is formed via the most stable bonds Cminimal solu- 
bility), while that at the cathode is due to the maximal chemical activity of the ele- 
ments. 

In electrolyte solutions, the forces between the ions and the heating surface are 
sufficient to retain the double-layer ions when a steam bubble is formed, so the grow- 
ing bubble merely displaces the ions radially from its center, and at the edge of the 
maximum contact spot one gets a certain supersaturation. Spontaneous crystallization 
occurs at the vapor-solid-liquid phase interface, and this deposits minute crystals on 
the heating surface, which form a ring of scale in the shape of the bubble. 

The scale rings are thicker than the double layer and do not persist long if the 
solution is far from saturated. New rings are formed while previously formed ones dis- 
solve in unsaturated solutions. Either process may predominate in accordance with the 
steam formation rate and solution concentration. 

When scale is deposited generally, channels are formed in the deposit, in which 
the solution can circulate; any material too large to pass through the microscopic 
circulation loops is deposited in the pores to form supersaturated complexes, where it 
crystallizes. This consolidates the scale and increases its thermal conductivity. 

The final crystalline scale has a fairly dense and strong structure, with indi- 
vidual elements taking the form of fine filaments of crystalline material, which pene- 
trate into the numerous minute cracks in the metal surface. This mode of contact be- 
tween the metal and the scale prevents the latter from separating spontaneously, and is 
the cause of the great difficulty in removing scale from heating surfaces. 
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The strength of these crystalline filaments is dependent on their chemical nature, 
so scales differ in strength of adhesion to the metal, and also in rate of formation, 
the latter being determined by solution composition, surface character, and hydro- 
dynamic and other conditions. 

Dep. 1791-74, April 15, 1974. 
Original article submitted March 16, 1973. 

SOLUTION OF SOME STEADY-STATE PROBLEMS IN THE 

THEORY OF THERMAL CONDUCTION 

V. T. Ivanov and F. V. Lubyshev UDC 536.24 

Steady-state problems in the theory of thermal conduction result in integration 
of Poisson's equations with heat sources disposed on lines and surfaces; sometimes, 
the strengths of these sources are not known, but one knows the temperature of the 
total amount of heat from the source. A method of handling such problems is presented, 
which is based on solution of inverse problems for differential equations. 

The following problems are considered: 

I. ax~ + ag ~ - ~'~' 6 ( x - - x o )  ( O < x < a ,  O < v < b ) ,  ( i )  

(o,.~.-- l~"~)v=o = t:, (x), (~_,,~ § l h @ y = b  = ,~ (x), 

(v, Xo) - f (v) (c < y < d). 

a~ a I &t a ' u  os (z) 

II. c~r2 -r- r Or - c  8z  ~ - -  2 a k r  
6(r--to) (Rt<r < R 2 0 < z < H ) ,  

u (z, ro) = f (z) (c < z ~ d) .  

02u 1 8u ! a~u co(qc) 5 ( r - - r o )  ( R I < r < R 2 ,  0 < q : : < 2 ~ ) ,  
III. 8r 2 , r Or { t ,2 aq~ 2 - -  kr  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(zo) 

u (r, qo) = u (r, ~p + 2.~), ~ (r o, {p) = f (9) (c <.4 V ~ d), ( 1 l )  

where ~i and ~i are nonnegative constants, ~i + ~i > 0 (i = I, 4), ~(g), ~(z). ~(~)~ ~i(x), 
@i(z) (i = i, 2) are known functions, and the strengths of the sources m(y), ~(z), ~ 
are unknown and are to be determined; ~ is a Dirac delta-function, and k is the thermal 
conductivity. 

If the temperature distribution along the internal source is unknown, but the 
total amount of heat from the source is known, and it is also known that the tempera- 
ture is constant, then the following condition can be added to (1)-(3) in problem I: 
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d d 

i' I.'~(xo-O, y)id.y+ !'l.;(xo+O, y)f@ Q .(Xo, y)= To, (~<y .:,~), C �9 ~ -  ' 

C C 

where Q is the amount of heat received from unit length of source. 

Solutions to problems I-III have been obtained by differential-difference methods 
and integral Fourier, Hankel, and Mellin transformations. The method of solution can 
be extended to regions composed of rectangles. It is clearly possible to consider an 
arbitrary finite number of sources arranged along the line x = xo, xl, ..., Xm. It is 
possible to optimize the distributions by solving the inverse problems in conjunction 
with mathematical programming. An extension is made to equations with variable coeffi- 
cients. It is shown that the solution to the inverse problem converges. A numerical 
experiment is reported. 

Dep. 816-74, July 19, 1972. 
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DISTRIBUTION OF THE STATISTICAL CHARACTERISTICS OF THE 

TEMPERATURE OVER THE THICKNESS OF A HEAT-TRANSMITTING WALL 

~ V.A. Vorob'ev and O. V. Remizov UDC 517.63:621.1 

A direct-flow steam-generating tube has wall temperature fluctuations, which are 
of random character, and which may arise from various causes. The causes of the pulsa- 
tions in the economizer and the superheater zone are turbulent effects. In the 
evaporator zone, i.e., from the start of surface boiling to the start of deteriorating 
heat transfer, the wall-temperature fluctuations are due to the random formation and 
collapse of clumps of steam bubbles. At the start of the zone of deteriorating heat 
transfer, the pulsations are due to the varying contact of the surface with liquid or 
steam. 

When measurements are made ontemperature fluctuations at channel walls, the 
thermocouples often lie at a certain distance from the surface and the purpose of the 
study is to establish the damping of the temperature pulsations in the wall thickness. 

A method is presented for calculating the statistical characteristics of the tem- 
perature fluctuations (mathematical expectation, spectral density, and dispersion) for 
an infinite plate. Laplace transformation is used with integral expansion of the ran- 

dom process. 

The following two cases are considered: 

i) The variation in temperature pulsation through the wall thickness, with an in- 
ternal heat source, with a temperature pulsating on one side and the other side thermal- 
ly insulated. The transfer function is found as 

(i~o, x) - 
h ]//- --!_~ c 6 

2) the temperature fluctuation varies through the wall thickness with the heat- 
transfer factor fluctuating on one side and a fixed heat-transfer factor on the other. 

The transfer function in this case is 

1432 



NOTATION 

w is the circular frequency; x is the current coordinate; a, I, and ~ are the 
thermal diffusivity, thermal conductivity, and heat-transfer coefficient; ~ is the 
wall thickness. 

Dep. 804-74, November 26~ 1973. 
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THERMODYNAMIC PROCESSES OF A REAL GAS 

K. A. Khairutdinov UDC 536.71 

Reversible processes of a real gas in systems of variable volume V, mass G, and 
specific entropy s are examined on the basis of differential coefficients of deviation 
[i], the ratios of the respective p-v-T derivatives of real and ideal gases. The 
derivation of the equations of adiabatic processes with different exponents -- tempera- 
ture, volume, and volume-temperature exponents -- is shown on the basis of different ex- 
pressions of the law of conservation of energy (_for the internal energy and the en- 
thalpy) and of the equation of state of a real gas in the form pv = zRT. A graph is 
presented showing the variation in the adiabatic exponents of nitrogen with the initial 
parameters p = i0 bar and T = 270~ along the adiabat up to a pressure of i000 bar. 

In the derivation of the equation for the polytrope an expression for the total 
pressure differential is used: 

! r dp = (Op/OV)a,s dV @ (Op,:OG)g,s dO @ (Opgo)v,a ds. Q1) 

The values of the partial derivatives are determined from the equations for the corre- 
sponding partial processes: adiabatic with G = const and adiabatic with V = const from 
the adiabatic equation with a temperature exponent • and isochronous with V, G = const. 
As a result, we obtain the equation 

d__~p dV dO ds dz 
p +•215 ~ -•215 (2) 

Cp Z 

which represents the differential form of the equation of state relating the generalized 
potential with all the generalized coordinates [2]. To obtain the equation for the 
polytrope we substitute into it the parameters [3] 

"i' = - -  (dG/G)/(dV /IO, ~ = - -  (ds/cp)/(dV/V), 

connecting the variations in G .and s in the process with the variations in V: 

dz , ~V d~ ( 3 )  
- - - F •  (1 + T +  O) - 7 - -  z - -  = O. 

p z 

The c o n s t a n c y  o f  t h e  r a t i o  o f  t h e  e x p o n e n t  o f  t h e  p r o c e s s  t o  t h e  e x p o n e n t  o f  t h e  a d i a b a t  
i s  t a k e n  a s  t h e  d e f i n i t i o n  o f  a p o l y t r o p i c  p r o c e s s  o f  a r e a l  g a s ,  and  w i t h  t h i s  c o n d i -  
t i o n  Eq. (3)  i s  i n t e g r a t e d  by  p a r t s  [ 4 ] .  The r e s u l t i n g  e q u a t i o n  f o r  t h e  p o l y t r o p e  c o n -  
t a i n s  an  e x p o n e n t i a l  m u l t i p l i e r  w h i c h  d e p e n d s  on  t h e  c o u r s e  o f  v a r i a t i o n  o f  t h e  e x p o n -  
e n t  along the polytrope. An equation for the polytrope connecting the temperature 
with the volume is obtained in this way. 
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In the calculation of processes using the equations obtained the properties of 
real gases which enter into these equations -- adiabatic indices, heat capacities, com- 
pressibility factors, etc. -- can be calculated with the help of tables of thermo- 
dynamic functions [5]. 

, 

2. 
3. 
4. 
5. 

LITERATURE CITED 

A. M. Rozen, Zh. Fiz. Khim., 19, 469 (1945). 
A. A. Gukhman, Fundamentals of Thermodynamics [in Russian], Alma-Ata (1947). 
K. A. Khairutdinov, Inzh.-Fiz. Zh., 22, 1134 (1972). 
K. A. Khairutdinov, Inzh.-Fiz. Zh., 22, 1107 (1972). 
K. A. Khairutdinov, Inzh.-Fiz. Zh., 24, 735 (1973). 

Dep. 1779-74, April 17, 1974. 
Original article submitted January i0, 1972. 

EQUATION OF STATE FOR MULTICOMPONENT GAS MIXTURES 

G. Ya. Savel'ev UDC 536.7 

On the basis of the concepts of the compartment method for dense gases a�9 equa- 
tion of state is obtained for gas mixtures consisting of q components: 

q q 

I : ) p V  = R T  1 ' g = l  ._t_ i = l  - v -  ~ �9 . . . .  

Here B i and C i are the second and third virial coefficients of the i-th fictitious sub- 
stance, for which the constants of the Lennard-Jones 6-12 potential function are deter- 
mined as follows: 

q q 

j= l  /=I  

1 

where sii, ~ sjj, ojj are the respective constants for the i-th and j-th components 
ofthe mixture. 

Expressions for the thermodynamic properties of gas mixtures can be found using 
known thermodynamic equations and the equation of state obtained. 

Substantiation is provided for the method developed. 

Dep. 1794-74, April 15, 1974. 
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MODEL OF TOTAL VISCOSITY IN THE BOUNDARY REGION 

OF A TURBULENT BOUNDARY LAYER 

V. D. Sovershennyi UDC 532.13 

An equation for the total viscosity, which can be recommended for the calculation 
of flow in the boundary layer, including regions of laminar, transitional, and turbu- 
lent modes, is proposed in the report. 

It is suggested that the total ("effective") viscosity can be represented in the 
form of a linear combination of the molecular and molar (turbulent) viscosities: 

where kl and k2 are free coefficients. Obviously, with greater distance from the wall 
the total viscosity coefficient must change to the turbulent viscosity coefficient 
(the value of s is henceforth expressed in accordance with the Prandtl equation), while 
upon approach to the wall the viscosity coefficient must degenerate to the molecular 
viscosity ~. These conditions will be satisfied if, in particular, one takes 

\ ~1,1 v 

The values of ~, m, and ~, are assumed to be independent of the coordinate ~. We 
determine the values of m and B from experimental data, for which we examine the sim- 
plest case of the flow of an incompressible gas at a flat nonpermeable plate. In this 
case the value of q,, which characterizes the transition from the laminar to the turbu- 
lent mode of flow, is taken as ~, = 11.64 at Re = lO s Integrating the equation of 
motion in the boundary region using the total viscosity, we obtain a velocity profile 
in which we determine the parameters m = 2 and $ = k 2 = 0.16 from the condition of best 
conformity with experiment (the data of Reichard, Nikuradse, and Kim). 

The universality of the constants m and B obtained can be demonstrated through 
comparison of calculated values with experimental data for more complicated flows. 
Calculations were made for a certain velocity profile with blowing (suction) at the 
wall and with a longitudinal pressure gradient. The results are in fully satisfactory 
agreement with the experimental data of Moffat, Keys, and Newman. 

It is interesting to note that the additional viscosity from turbulent mixing de- 
creases upon approach to the wall as a function of the fourth power of the coordinate, 
which corresponds to the experimental data of Daisler and Hanratty. 

The calculations conducted and their comparison with experimental data indicate 
the universality of the proposed equation of total viscosity and the universality of 
the constants m = 2 and B = k 2 = 0.16 entering into it. It is noteworthy that no new 
empirical constants appeared here; ~ is expressed through the well-known constant k = 
0.4, and m = 2 corresponds to the exponent in the Prandtl equation for the turbulent 
viscosity. 

Using the proposed total viscosity equation an expression for the friction T can 
be written in convenient explicit form (solved for the friction) 

Ou 
T = p~ Og ' P~ = pq~ (A'  ~ , ) ,  

~'~ ~ pl  ~ Ou (A, ~.) = [A ~ - .  ~ + 2 A~)~  4~2A ] (2A)'~, A - -  

and I is the mixing length. 
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EXPERIMENTAL STUDY OF AN UNDEREXPANDED JET ESCAPING 

FROM A NOZZLE WITH A SLANTED CUT 

V. I. Pogorelov and G. B. Shcherbanina UDC 532.522 

Experimental studies were conducted on an air jet which emerged from conical noz- 
zles with aperture half-angles ~ = 1.5, 3, and 6 ~ . The planes of the exit cross sec- 
tions of the nozzles were skewed relative to the axis of symmetry at angles ~ = 40-90 ~ 
(the latter angle corresponds to a straight nozzle). Two types of nozzles with Mach 
numbers of 1.6 and 2.5 at the sharp rim of the exit cross section were used, and the 
nonrated factor of the discharge, equal to the ratio of the pressure at the sharp rim 
to the pressure in the medium, was varied in the range from 2.5 to 20. 

Shadow photography of the jet and measurement of the total pressure with a Pitot 
tube mounted within a cylindrical shield, which made it possible to obtain an error not 
exceeding 1% in the total pressure measurements at skew angles of • ~ for the oncoming 
stream [i], were carried out in the course of the experiments. The pressure pickup 
was shifted steadily perpendicular to the nozzle axis using a special coordinating de- 
vice. 

As a result of the experiments it was established that the jet is turned toward 
the cutoff part of the nozzle, with the total pressure profiles becoming equalized with 
greater distance from the exit cross section of the nozzle and then becoming symmetric- 
al not only relative to the plane of symmetry dividing the jet into two equal parts but 
also relative to some straight line lying in the plane of symmetry and inclined to the 
nozzle axis by the angle AP, which is taken as the turning angle of the jet axis. The 
turned axis of the jet and the nozzle axis intersect near the point of interaction of 
the prime characteristics converging from the nozzle rims. The experimental value of 
the angle A~ is considerably smaller than the calculated angle determined on the basis 
of the system presented in [2]. 

An analysis of oscillograms of the total pressure and of the shadow photographs 
indicates the total symmetry of the shape of the prime body of the jet in the plane 
perpendicular to the plane of symmetry and containing the nozzle axis. In addition, 
the geometrical dimensions of the jet coincide with the dimensions of an axially sym- 
metrical jet with a Mach number at the exit cross section equal to the Mach number of 
the slant-cut nozzle in this plane. 

This makes it possible to use calculated functions for an ordinary axially sym- 
metrical jet [3] to calculate the flow geometry in the indicated plane in the presence 
of a nozzle with slanted cut. 

l* 

2. 

3. 
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DYNAMICS OF A TWO-PHASE MEDIUM AT LOW ACCELERATZONS 

D. P. Alekseev UDC 532.529.6 

It is shown that empirical relationships for the speed of gas bubbles and resist- 
ance vectors under various conditions applicable to terrestrial gravitation can be ex- 
trapolated to the region with very much weaker mass forces. The empirical relation- 
ships are transformed into identical dimensionless ones, with Reynolds, Frood, and 
Bond numbers as independent variables. 

The mode of rise and speed w can be determined for an unbounded liquid and for a 
liquid bounded by a cavity for certain ranges in the mass forces j and characteristic 
linear dimensions R of the gas bubble. 

If the size of the gas bubble is comparable with that of the cavity, there is a 
marked effect on the behavior from the deformation of the phase interface. Relation- 
ships are given in inexplicit form between the bubble deformation parameters and the 
Bond number Bo for bubbles in the form of pulsating and stable spheroids. The de- 
formation of a mushroom-shaped bubble is also discussed. 

Experiments have also been performed with weak mass forces using evaporation in a 
freely falling container. It is concluded that the empirical relationships derived 
for terrestrial gravitation need only be slightly corrected to describe satisfactorily 
the behavior of a two-phase medium for j of 0.05-0.25 m/sec 2 (Fig. ic), Some numeric- 
al examples are given to illustrate the corrected empirical relationship. 

Dep. 807-74, December 21, 1972. 
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A HORIZONTAL STABILIZED HETEROGENEOUS FLOW IN PNEUMATIC TRANSPORT 

M. E. Dozin UDC 532.529.5 

An experimental study has been made of the relation between the resistance factor 
for horizontal transport line and the similarity criteria for a stabilized disperse 
flow transporting powder or granular materials. 

The differential equations for such a flow go with the conditions of uniqueness 
[i] to give the dimensionless equation 

~__)~o~q~(~, Frs, 9~ D kDe ) 
o~ d (i) 

where ~ and ~o are resistance coefficients for the transport and the gas flow, ~ is the 
concentration by weight, Fr s if the Frood number for the solid component, Po and Ps 
are the densities of the carrying medium and solid component, and D and d are the 
diameters of tube and particle~ k e is the hydraulic roughness of the tube. 

The main experiments were performed on a pneumatic transport system with hori- 
zontal straight pipes of length 33 m. The pipes were completely free from bends, which 
considerably reduced the pressure fluctuations in the measuring section and improved 
the accuracy of pressure-difference measurement. The design of the equipment provided 
for a wide range in parameter variation and automatic recording. 

Each series of the main runs was performed so that one of the numbers in (I) was 
varied widely to determine directly its effects on the function, with all the other 
numbers constant; the results gave a working relationship for the additional resistance 
in the form 
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Po \ D / " (2 )  

The general character of (2) was confirmed for pneumatic transport of various pow- 
ders and granular materials; A and n were found to take the following values: granular 
materials in polished tubes gave A = 0.35.10 -a and n = 0, while powders gave A = 0.25 
and n = 0.7. 

Processing of these data and published ones indicate that the error in determining 
the resistance factor from (2) does not exceed 11%, except in isolated cases. It is 
shown to be necessary to incorporate the tube roughness in generalizing the experiment- 
al data. 
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DROPLET SIZE SPECTRUM DETERMINATION BY PULSE COUNTING 

~. G. Bratuta and A. R. Pereselkov UDC 536.24:621.156:628.84 

Pulse counting is a good method of droplet size determination, particularly for 
polydisperse, high-speed, and high-temperature gas-liquid flows [i]. This has been 
utilized in the thermal power laboratory at Lenin Polytechnical Institute, Kharkov [2]. 
The measurement concerns the frequency h(S) with which droplets short-circuit elec- 
trodes, and this gives the unnormalized density distribution f(D) for the droplet sizes 
by solving the integral equation 

oo ! 

h (S) = @ t~[D2 arccos @ - -  S (D~ -- S2) 7] f (D) (1)  
S 

i 

where D is the drop diameter and S is the distance between electrode ends. 

It is found that Wicks and Dakler solved (i) inaccurately, and the solution is un- 
stable under change in the step and choice in the upper limit of integration D m. 

An exact analytical solution has therefore been found for (i). 

We differentiate (i) twice and transfer to new variables to obtain an integral 
equation of Abel type having an exact analytic solution, which can be put in terms of 
the previous variables as 

oo I 

I - [ ( D ) =  ~ (S~"--D2) 2hIV(SidS. (2)  

D 

In many cases, the observed h(S) can be approximated closely by 

In that case, 

h (S) = Bexp (-- czS). (3 )  

~aB 
f (D) = - -  K,  (~D),  ( 4 )  

1 4 3 8  



where KI(~D) is a Besse! function. Then the normalized density distribution for the 
diameter takes the form 

254 
v (D) - -  D~K1 (aD). (5) 

3n 

If f(D) is found numerically from (2), the integration is carried up to a finite 
limit. 

The distribution found from the exact solution to the integral equation eliminates 
the major errors arising from the numerical method used by Wicks and Dakler. Experi- 
mental test shows that the method can be realized at transsonic speeds in a two-phase 
medium at pressures up to 40 bar at high temperatures. 
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